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ABSTRACT 

In 2000 Lo, Mamaysky and Wang have published a paper in which they show that the 
indicators of technical analysis(TA) are informative, i.e. that daily stock returns, conditioned 
on TA indicators are different from daily unconditional stock returns.  
The paper is readily readable and the authors honestly report about the shortcomings of the 
statistical tools they engage.  
Lo et al use historical market data from 1962 to 1996. So the natural question is whether the 
TA indicators stay informative during the "Internet era", i.e. when both individual and 
institutional traders got enough computational and telecommunicational power to exploit 
market imperfections. 
I try to reproduce the results of Lo et al for the timespan from 1995 to 2010 (historical data for 
DJ30, SP100, NASDAQ100) and for the timespan from 2003 to 2010 (historical data for 10 
stocks from DAX).  I come to the conclusion that the results are not anymore reproducible.  
Additionally, I show that the shortcomings of statistical tools applied by Lo et al should not 
be disregarded. 
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Method 
 
Following Lo et al I engage kernel smoothing to extract the regularities from the stock price 
chart. Lo et al use the Gaussian kernel and set the bandwidth parameter to h3.0  where h  
minimizes the cross-validation function. The factor 0.3 is chosen by eye (of several 
professional technical analysts) in order to avoid oversmoothing. 
 
I, in turn, rely on np (Nonparametric kernel smoothing methods for mixed data types) package 
for R. R is a powerful opensource statistical software, freely available from http://www.r-
project.org 
The routine npreg of the package np automatically chooses an optimal bandwidth parameter.  
 
In order to control the regression smoothing quality I let my R-script generate the graphical 
output at every step.  
 
Looking at thumbnail gallery I can readily identify the abnormalities, at least the gravest. 

 
Figure 1: Principle of the quick visual control of results (in this case for BTOP pattern) 
 
 
In most cases I find the smoothing adequate. Interestingly, when I engage ksmooth {stats} 
(another R routine for kernel smoothing) with the same bandwidth and kernel as in npreg I get 
significantly different results. This lies, most likely, on fine differences in program 



implementation. In either case npreg produces smoother results and much more reliable: 
ksmooth frequently generated no graphical output at all (Figure 3, Step 1017) whereas npreg 
nearly always delivers  an adequate picture. 
 

 
Figure 2: Example of smoothing with npreg (black curve) and ksmooth (red curve)
                  (DJ30 historical prices, step 2664) 
 
Some abnormalities, however, do appear, namely at step x everything is ok, at step x+1 
sudden oversmoothing occurs and at step x+2 everything is ok again (Figure 3). 
It takes place for both npreg and ksmooth routines.  
 
Trying to multiply the optimal bandwidth with 0.3, as Lo et al do, does not help out. It leads 
to undersmoothing (Figure 4) which occurs even a little bit more often than an 
undersmoothing in case of the optimal bandwidth.   
For a smaller bandwidth one should expect more pattern recognized. It does take place but the 
difference in cases of optimal bandwidth h and 0.3h is not so drastic (cp. Table 1 with Table 
4). Additionally, with the bandwidth equal to 0.3h it tends to detecting of too local extrema. 
That's why I further work with optimal bandwidth h. 
  



   
Step 1017 Step 1018 Step 1019 

Figure 3. Abnormalities by kernel smoothing. npreg (black) and ksmooth (red) with optimal bandwidth  (DJ30 historical prices) 
 

   

Step 2957 Step 2958 Step 2959 
Figure 4. Abnormalities by kernel smoothing. npreg with 0.3 x optimal bandwidth  (DJ30 historical prices) 



Following Lo et al, I set the window length l=35 days and the lag d=3 which allows for 
identifying of the last local extremum (i.e pattern completion). Interestingly, almost always it 
suffices 2 days lag to identify the pattern but I still leave d=3. If I get a pattern identified at 
step x and then the same pattern at step x+1 I neglect the latter (Figure 5).  
 

 
Step 853, DT pattern identified 2 days after 

completion. 
Step 854, the same DT pattern identified 3 
days after completion; will not be counted 

Figure 5. batch_kernel_regression_DTOP_and_DBOT.r (DJ30.xls) 
 
 
As to pattern definition, I follow Lo et al with an exception for DTOP and DBOT which I 
extend as follows: 
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So the only difference with Lo et all that I use xE  and yE  instead of 1E  hence not missing 

cases like that on Figure 6. It is worth mentioning that the (counter)example on Figure 6 is 
artificial, I changed the condition averagetheirofwithinareEandE ax %5.1  to 

averagetheirofwithinareEandE ax %4.0  in order to generate it, otherwise the 1st 

top(bottom) was always the 1st local extremum.  
 
 
As to search of local extrema, I rely on R package msProcess, routine msExtrema. 



Figure 6. By DTOP the 1st top is not necessarily the 1st local maximum  
 
 
I do not split the timespan to 5 year periods, partly for simplicity, partly because I believe the 
timespan 1995-2010 is a "unitary" formation (turbulent time of bubbles and burst). Last but 
not least, the practitioners trade permanently and cannot do such kind of splitting. 
 
As to goodness-of-fit, I apply two-sample Kolmogorov-Smirnov test to check the null-
hypothesis that both unconditional returns and the returns conditioned on patterns come from 
the same distribution. 
  
I do not apply Chi-square test believing that " Kolmogorov-Smirnov test is more powerful 
than chi-square test when sample size is not too great" (Ricci).  



Results 
 
Table 1.    DJ30  Jan. 1995 - Dec. 2010.   optimal bandwidth 
Pattern Number of 

occurrence  
KS-Distance 
nonnormalized 
returns 

p-value KS-Distance 
normalized returns 

p-value 

TBOT 29 0.1263 0.7476 0.1871 0.2657 
TTOP 20 0.1242 0.9189 0.185 0.5037 
BTOP 41 0.1536 0.294 0.0672 0.993 
BBOT 29 0.1827 0.2914 0.1075 0.8937 
HS 145 0.0726 0.4522 0.0976 0.1388 
IHS 147 0.0646 0.5951 0.0574 0.7385 
RTOP 134 0.1396 0.01276 0.1245 0.03579 
RBOT 117 0.0727 0.5857 0.0703 0.6275 
DTOP 77 0.1026 0.4045 0.106 0.3641 
DBOT 50 0.1276 0.3970 0.0954 0.7592 
 
 
Table 2.    NASDAQ100  Jan. 1995 - Dec. 2010. optimal bandwidth 
Pattern Number of 

occurrence  
KS-Distance 
nonnormalized 
returns 

p-value KS-Distance 
normalized returns 

p-value 

TBOT 35 0.1165 0.7344 0.0905 0.9388 
TTOP 21 0.1925 0.4211 0.1878 0.4528 
BTOP 41 0.2114 0.04874 0.1313 0.4711 
BBOT 35 0.2299 0.05104 0.1845 0.1885 
HS 111 0.0821 0.4603 0.0848 0.4185 
IHS 101 0.1126 0.1645 0.0923 0.3707 
RTOP 65 0.1124 0.3941 0.1217 0.2995 
RBOT 65 0.1467 0.1276 0.1414 0.1547 
DTOP 36 0.1222 0.6613 0.1897 0.1532 
DBOT 35 0.1075 0.8179 0.1251 0.6489 
 
 
Table 3.    SP500  Jan. 1995 - Dec. 2010. optimal bandwidth 
Pattern Number of 

occurrence  
KS-Distance 
nonnormalized 
returns 

p-value KS-Distance 
normalized returns 

p-value 

TBOT 31 0.1375 0.6064 0.2021 0.1618 
TTOP 21 0.1573 0.6795 0.1096 0.9632 
BTOP 49 0.1652 0.1422 0.1033 0.6803 
BBOT 40 0.1508 0.3289 0.1586 0.2718 
HS 153 0.0675 0.5137 0.0852 0.2346 
IHS 150 0.0741 0.4054 0.0456 0.924 
RTOP 124 0.0944 0.2344 0.075 0.5086 
RBOT 107 0.1048 0.2026 0.0946 0.3083 
DTOP 74 0.1001 0.4599 0.1062 0.3855 
DBOT 45 0.148 0.2836 0.0937 0.8297 



 
Table 4.    DJ30  Jan. 1995 - Dec. 2010.   0.3 x optimal bandwidth 
Pattern Number of 

occurrence  
KS-Distance 
nonnormalized 
returns 

p-value KS-Distance 
normalized returns 

p-value 

TBOT 31 0.1185 0.7809 0.1573 0.4316 
TTOP 25 0.1563 0.5789 0.1008 0.9625 
BTOP 49 0.1987 0.04375 0.0834 0.8894 
BBOT 35 0.1289 0.612 0.1113 0.7837 
HS 205 0.0618 0.4452 0.0587 0.5133 
IHS 207 0.0739 0.2319 0.0855 0.1124 
RTOP 203 0.1054 0.02728 0.0866 0.1105 
RBOT 175 0.0554 0.6811 0.0484 0.8271 
DTOP 80 0.0989 0.4264 0.0815 0.6749 
DBOT 45 0.0684 0.9854 0.1197 0.5464 
 
 



Discussion 
First of all it is worth mentioning that the "power of pattern recognition" of my algorithm 
implementation is at least not less than that of Lo et al. Let us consider the case of Jow Jones 
industrial average (DJ30).  
DJ30 is constituted by the stocks of the companies with the largest capitalization. Lo et al, in 
turn, consider 50 stocks splitting them to 5 quintiles: from the smallest capitalization to the 
largest. So it is adequate to confront DJ30 with the largest quintile.  
Lo et all consider the timespan from 1962 to 1996 (34 years), I consider the period from 
Januar 1995 to December 2010 (16 years). So let us compare how many patterns per year per 
stock do we recognize on average. To do this I divide "My Report . Table 1. Number of 
occurrence" by 16 and "Lo et al. Table II. Largest Quintile, 1962 to 1996. Entire"  by 10 
stocks * 34 years = 340. 
The results are summarized in the following Table 5. 
 
Table 5.    Comparison of the recognition power 

Pattern Number of 
recognized 

patterns 

Power of 
recognition (per 
year, per stock) 

Number of 
recognized 

patterns 

Power of 
recognition (per 
year, per stock) 

 me Lo et al 
TBOT 29 1.8125 214 0.62941176
TTOP 20 1.25 208 0.61176471
BTOP 41 2.5625 108 0.31764706
BBOT 29 1.8125 110 0.32352941
HS 145 9.0625 208 0.61176471
IHS 147 9.1875 215 0.63235294
RTOP 134 8.375 196 0.57647059
RBOT 117 7.3125 250 0.73529412
DTOP 77 4.8125 308 0.90588235
DBOT 50 3.125 282 0.82941176
 
 
  
Further is clear that in the most cases the p-values, which I obtain, are not small enough to 
reject the null hypothesis that the unconditional returns and the returns conditioned on 
patterns come from the same distribution. For the optimal bandwidth the only exception is 
RTOP and for 0.3*optimal bandwidth are BTOP and RTOP. 
 
Oppositely, Lo et all yield significant KS test statistic for five patterns: HS, BBOT, RTOP, 
RBOT and DTOP. 
Moreover, another [based on quantile comparison] goodness-of-fit test, which Lo et al 
implement, confirms the significance of all patterns for NASDAQ (Lo et al.Table VI) and 
seven of 10 patterns for NYSE/AMEX (three exceptions are BBOT, TTOP and DBOT).   
Such results of quantile-comparison-goodness-of-fit test can be easily explained if one takes a 
look at QQ-Plots. At Figure 7 there are two examples: BTOP and IHS but QQ-Plots for other 
patterns look quite similar. 



BTOP IHS 
Figure 7. Example of QQ-Plots show discrepancy in tails and good conformance in body of 
conditional and unconditional distributions  
  
One readily sees it are the tails(extreme events), i.e. the 1st and the last quantiles, what 
contributes to the discrepancy between the distributions. 
I can suggest two explanations: first of all extreme events are relatively rare. Either the 
patterns are, thus it is not implausible that there no extreme events in the distributions, 
conditioned on the patterns. Second explanation maybe that extreme events do not occur 
[directly] after a pattern completes, however, there is no plausible motivation behind this 
assumption. 
 
 
As to KS test (which puts more value to the body of the distributions than to their tails) the 
difference between Lo's et al results and mine can lie on sample size. Combining 10 of 50 
stocks in one quintile Lo et al obtain more data, so more power of KS test. However, they 
normalize returns on individual stock by subtracting means and dividing by standard 
deviation 
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Tables 1 - 3 show that such normalization substantially influences KS statistic and its p-value. 
Though the bias direction is not visible with naked eye but in 18 of 30 cases the p-values for 
normalized distributions are larger, i.e. probability to reject the null hypothesis decreases.  It 
is plausible for distributions that are not too far away from normal, since if we normalize in 
such a way two normal distributions with different   and  , they become identical. 
 
Last but not least, combining the normalized returns of individual stocks into quintiles may 
increase the power of KS test but since the stock returns are usually correlated, the increase 
may be not substantial. 
Combining the conditional returns on DJ30, NASDAQ100 and SP500 I obtain the following 
Table 6 
 
 
 



 
Table 6.   KS test statistic for combined normalized returns (DJ30 + NASDAQ100 + SP500) 

pattern KS-Distance p-value 
TBOT 0.1082 0.2199 
TTOP 0.0882 0.7234 
BTOP 0.067 0.6007 
BBOT 0.0957 0.3010 
HS 0.0591 0.1255 
IHS 0.0461 0.386 
RTOP 0.0786 0.04084 
RBOT 0.0805 0.05162 
DTOP 0.0929 0.08344 
DBOT 0.0589 0.7641 
 
There is no improvement of statistical significance. However, the indices are very strongly 
correlated, so probably one should try relatively uncorrelated individual stocks.  
 
So as next try I select 10 stocks from DAX (German analogue of Dow Jones industrial 
average)  so that they represent different branches. Respectively, we can expect moderate 
correlation between these stocks. 

Company Branch 
Adidas Commodities (Clothes) 
Allianz Insurance 
Daimler Automobiles 
Deutsche Bank Banking 
Deutsche Telekom Telecommunications 
Heidelberger Zement Building materials 
Henkel Commodities (household goods) 
Merck Pharmacy 
RWE Energy 
ThyssenKrupp Metals 
The period I consider is from January 2003 to December 2010 (earlier data are not available 
from de.finance.yahoo.com) 
 
I do not report the results for each stock since there is nothing special about them and 
combined normalized returns are as follows in Table 7: 
Table 7.   KS test statistic for combined normalized returns of 10 stocks from DAX 

pattern KS-Distance p-value 
TBOT 0.073 0.1943 
TTOP 0.0727 0.2696 
BTOP 0.0822 0.1337 
BBOT 0.0741 0.3665 
HS 0.0573 0.05796 
IHS 0.0345 0.5524 
RTOP 0.0624 0.1731 
RBOT 0.052 0.3593 
DTOP 0.0574 0.5841 
DBOT 0.1057 0.0671 
Nothing special as well.  
 



Finally, I check whether I can obtain the significant statistic for earlier market history, trying 
DJ30 for a period from 1962 to 1997 (Table 8). There are at least three patterns with 
significant test statistic, so it might support the assumption that TA-patterns were informative 
but got exhausted in Internet era. 
 
Table 8.    DJ30  Jan. 1962 - Dec. 1997 
Pattern Number of 

occurrence  
KS-Distance 
nonnormalized 
returns 

p-value KS-Distance 
normalized returns 

p-value 

TBOT 74 0.099 0.4682 0.0593 0.9586 
TTOP 56 0.1662 0.0924 0.1595 0.1176 
BTOP 96 0.0855 0.4912 0.0582 0.9044 
BBOT 69 0.092 0.6079 0.0836 0.7245 
HS 391 0.0373 0.673 0.0456 0.4177 
IHS 396 0.0517 0.2624 0.0525 0.2458 
RTOP 338 0.0637 0.1422 0.0406 0.6553 
RBOT 319 0.0807 0.03604 0.0454 0.5489 
DTOP 180 0.1225 0.01 0.0833 0.1723 
DBOT 127 0.1521 0.006084 0.0824 0.3633 
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